
©Silberschatz, Korth and Sudarshan12.1Database System Concepts

CS203 DB Principals

IS206 Fundamentals of DB

Asst.Prof. Asaad Alhijaj

Reference:
“Database System Concepts Fourth Edition” by Abraham Silberschatz Henry F. Korth S.

Sudarshan , McGraw-Hill ISBN 0-07-255481-9

©Silberschatz, Korth and Sudarshan12.2Database System Concepts

Chapter 8: Indexing and Hashing

 Basic Concepts

 Ordered Indices

 Static Hashing

 Dynamic Hashing

©Silberschatz, Korth and Sudarshan12.3Database System Concepts

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up

records in a file.

 An index file consists of records (called index entries) of the

form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

©Silberschatz, Korth and Sudarshan12.4Database System Concepts

Index Evaluation Metrics

 Access types supported efficiently. E.g.,

 records with a specified value in the attribute

 or records with an attribute value falling in a specified range of

values.

 Access time

 Insertion time

 Deletion time

 Space overhead

©Silberschatz, Korth and Sudarshan12.5Database System Concepts

Ordered Indices

 In an ordered index, index entries are stored sorted on the

search key value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose

search key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

 Index-sequential file: ordered sequential file with a primary index.

Indexing techniques evaluated on basis of:

©Silberschatz, Korth and Sudarshan12.6Database System Concepts

Dense Index Files

 Dense index — Index record appears for every search-key value

in the file.

©Silberschatz, Korth and Sudarshan12.7Database System Concepts

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

 Less space and less maintenance overhead for insertions and

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in

file, corresponding to least search-key value in the block.

©Silberschatz, Korth and Sudarshan12.8Database System Concepts

Example of Sparse Index Files

©Silberschatz, Korth and Sudarshan12.9Database System Concepts

Multilevel Index

 If primary index does not fit in memory, access becomes

expensive.

 To reduce number of disk accesses to index records, treat

primary index kept on disk as a sequential file and construct a

sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet another

level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion from

the file.

©Silberschatz, Korth and Sudarshan12.10Database System Concepts

Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan12.11Database System Concepts

Index Update: Deletion

 If deleted record was the only record in the file with its particular

search-key value, the search-key is deleted from the index also.

 Single-level index deletion:

 Dense indices – deletion of search-key is similar to file record

deletion.

 Sparse indices – if an entry for the search key exists in the index, it

is deleted by replacing the entry in the index with the next search-

key value in the file (in search-key order). If the next search-key

value already has an index entry, the entry is deleted instead of

being replaced.

©Silberschatz, Korth and Sudarshan12.12Database System Concepts

Index Update: Insertion

 Single-level index insertion:

 Perform a lookup using the search-key value appearing in the

record to be inserted.

 Dense indices – if the search-key value does not appear in the

index, insert it.

 Sparse indices – if index stores an entry for each block of the file, no

change needs to be made to the index unless a new block is

created. In this case, the first search-key value appearing in the

new block is inserted into the index.

 Multilevel insertion (as well as deletion) algorithms are simple

extensions of the single-level algorithms

©Silberschatz, Korth and Sudarshan12.13Database System Concepts

Secondary Indices

 Frequently, one wants to find all the records whose

values in a certain field (which is not the search-key of

the primary index satisfy some condition.

 Example 1: In the account database stored sequentially

by account number, we may want to find all accounts in a

particular branch

 Example 2: as above, but where we want to find all

accounts with a specified balance or range of balances

 We can have a secondary index with an index record

for each search-key value; index record points to a

bucket that contains pointers to all the actual records

with that particular search-key value.

©Silberschatz, Korth and Sudarshan12.14Database System Concepts

Secondary Index on balance field of

account

©Silberschatz, Korth and Sudarshan12.15Database System Concepts

Primary and Secondary Indices

 Secondary indices have to be dense.

 Indices offer substantial benefits when searching for records.

 When a file is modified, every index on the file must be updated,

Updating indices imposes overhead on database modification.

 Sequential scan using primary index is efficient, but a sequential

scan using a secondary index is expensive

 each record access may fetch a new block from disk

©Silberschatz, Korth and Sudarshan12.16Database System Concepts

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record

directly from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key

values K to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as

well as deletion.

 Records with different search-key values may be mapped to

the same bucket; thus entire bucket has to be searched

sequentially to locate a record.

©Silberschatz, Korth and Sudarshan12.17Database System Concepts

Example of Hash File Organization (Cont.)

 There are 10 buckets,

 The binary representation of the ith character is assumed to

be the integer i.

 The hash function returns the sum of the binary

representations of the characters modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch-name as key

(See figure in next slide.)

©Silberschatz, Korth and Sudarshan12.18Database System Concepts

Example of Hash File Organization
Hash file organization of account file, using branch-name as key

(see previous slide for details).

©Silberschatz, Korth and Sudarshan12.19Database System Concepts

Hash Functions

 Worst has function maps all search-key values to the same

bucket; this makes access time proportional to the number of

search-key values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned

the same number of search-key values from the set of all

possible values.

 Ideal hash function is random, so each bucket will have the

same number of records assigned to it irrespective of the actual

distribution of search-key values in the file.

 Typical hash functions perform computation on the internal

binary representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

©Silberschatz, Korth and Sudarshan12.20Database System Concepts

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0  i  32.

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows and
shrinks.

 Multiple entries in the bucket address table may point to a bucket.

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

©Silberschatz, Korth and Sudarshan12.21Database System Concepts

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see

next slide for details)

