
©Silberschatz, Korth and Sudarshan12.1Database System Concepts

CS203 DB Principals

IS206 Fundamentals of DB

Asst.Prof. Asaad Alhijaj

Reference:
“Database System Concepts Fourth Edition” by Abraham Silberschatz Henry F. Korth S.

Sudarshan , McGraw-Hill ISBN 0-07-255481-9

©Silberschatz, Korth and Sudarshan12.2Database System Concepts

Chapter 8: Indexing and Hashing

 Basic Concepts

 Ordered Indices

 Static Hashing

 Dynamic Hashing

©Silberschatz, Korth and Sudarshan12.3Database System Concepts

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up

records in a file.

 An index file consists of records (called index entries) of the

form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

©Silberschatz, Korth and Sudarshan12.4Database System Concepts

Index Evaluation Metrics

 Access types supported efficiently. E.g.,

 records with a specified value in the attribute

 or records with an attribute value falling in a specified range of

values.

 Access time

 Insertion time

 Deletion time

 Space overhead

©Silberschatz, Korth and Sudarshan12.5Database System Concepts

Ordered Indices

 In an ordered index, index entries are stored sorted on the

search key value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose

search key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

 Index-sequential file: ordered sequential file with a primary index.

Indexing techniques evaluated on basis of:

©Silberschatz, Korth and Sudarshan12.6Database System Concepts

Dense Index Files

 Dense index — Index record appears for every search-key value

in the file.

©Silberschatz, Korth and Sudarshan12.7Database System Concepts

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

 Less space and less maintenance overhead for insertions and

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in

file, corresponding to least search-key value in the block.

©Silberschatz, Korth and Sudarshan12.8Database System Concepts

Example of Sparse Index Files

©Silberschatz, Korth and Sudarshan12.9Database System Concepts

Multilevel Index

 If primary index does not fit in memory, access becomes

expensive.

 To reduce number of disk accesses to index records, treat

primary index kept on disk as a sequential file and construct a

sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet another

level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion from

the file.

©Silberschatz, Korth and Sudarshan12.10Database System Concepts

Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan12.11Database System Concepts

Index Update: Deletion

 If deleted record was the only record in the file with its particular

search-key value, the search-key is deleted from the index also.

 Single-level index deletion:

 Dense indices – deletion of search-key is similar to file record

deletion.

 Sparse indices – if an entry for the search key exists in the index, it

is deleted by replacing the entry in the index with the next search-

key value in the file (in search-key order). If the next search-key

value already has an index entry, the entry is deleted instead of

being replaced.

©Silberschatz, Korth and Sudarshan12.12Database System Concepts

Index Update: Insertion

 Single-level index insertion:

 Perform a lookup using the search-key value appearing in the

record to be inserted.

 Dense indices – if the search-key value does not appear in the

index, insert it.

 Sparse indices – if index stores an entry for each block of the file, no

change needs to be made to the index unless a new block is

created. In this case, the first search-key value appearing in the

new block is inserted into the index.

 Multilevel insertion (as well as deletion) algorithms are simple

extensions of the single-level algorithms

©Silberschatz, Korth and Sudarshan12.13Database System Concepts

Secondary Indices

 Frequently, one wants to find all the records whose

values in a certain field (which is not the search-key of

the primary index satisfy some condition.

 Example 1: In the account database stored sequentially

by account number, we may want to find all accounts in a

particular branch

 Example 2: as above, but where we want to find all

accounts with a specified balance or range of balances

 We can have a secondary index with an index record

for each search-key value; index record points to a

bucket that contains pointers to all the actual records

with that particular search-key value.

©Silberschatz, Korth and Sudarshan12.14Database System Concepts

Secondary Index on balance field of

account

©Silberschatz, Korth and Sudarshan12.15Database System Concepts

Primary and Secondary Indices

 Secondary indices have to be dense.

 Indices offer substantial benefits when searching for records.

 When a file is modified, every index on the file must be updated,

Updating indices imposes overhead on database modification.

 Sequential scan using primary index is efficient, but a sequential

scan using a secondary index is expensive

 each record access may fetch a new block from disk

©Silberschatz, Korth and Sudarshan12.16Database System Concepts

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record

directly from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key

values K to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as

well as deletion.

 Records with different search-key values may be mapped to

the same bucket; thus entire bucket has to be searched

sequentially to locate a record.

©Silberschatz, Korth and Sudarshan12.17Database System Concepts

Example of Hash File Organization (Cont.)

 There are 10 buckets,

 The binary representation of the ith character is assumed to

be the integer i.

 The hash function returns the sum of the binary

representations of the characters modulo 10

 E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch-name as key

(See figure in next slide.)

©Silberschatz, Korth and Sudarshan12.18Database System Concepts

Example of Hash File Organization
Hash file organization of account file, using branch-name as key

(see previous slide for details).

©Silberschatz, Korth and Sudarshan12.19Database System Concepts

Hash Functions

 Worst has function maps all search-key values to the same

bucket; this makes access time proportional to the number of

search-key values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned

the same number of search-key values from the set of all

possible values.

 Ideal hash function is random, so each bucket will have the

same number of records assigned to it irrespective of the actual

distribution of search-key values in the file.

 Typical hash functions perform computation on the internal

binary representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

©Silberschatz, Korth and Sudarshan12.20Database System Concepts

Dynamic Hashing

 Good for database that grows and shrinks in size

 Allows the hash function to be modified dynamically

 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit
integers, with b = 32.

 At any time use only a prefix of the hash function to index into a
table of bucket addresses.

 Let the length of the prefix be i bits, 0 i 32.

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows and
shrinks.

 Multiple entries in the bucket address table may point to a bucket.

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to
coalescing and splitting of buckets.

©Silberschatz, Korth and Sudarshan12.21Database System Concepts

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see

next slide for details)

